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Abstract—A numerical method to determine the heat transfer and phase change processes of a spherical

particle in a jet stream is deduced. The variations of the thermophysical properties of the particle and of

the plasma with temperature are taken into account. An example of alumina particles heated in an

argon-hydrogen plasma jet is given. The numerical results, compared with experimental measurements of
surface temperature, particle velocity and diameter show good agreement.

NOMENCLATURE
¢, mixture concentration;

Cps specific heat ;

Cp, drag eoefficient ;

D, particle diameter;

D,,, molecular diffusion coefficient;
L, latent heat of phase change;
q, heat flux;

r, radius;

t, time;

T, temperature;

V,v, velocity;

Nu, Nusselt number;

Pr, Prandtl number;
Re,  Reynolds number;
Se, Schmidt number ;
Sh, Sherwood number.

Greek symbols

o, heat transfer coefficient ;
B, mass transfer coefficient ;
&, material emittance;
A, heat conductivity;
n, viscosity;
0, density.

Subscripts

Quantities without subscripts refer to particle

g, gas;
B, boundary;

1, fusion;
e, evaporation;
k, solidification.

1. INTRODUCTION
IN THE use of plasma torches for spraying, the
intensive heat transfer between the gaseous medium
and the solid or liquid particles contained in it is an

*Presently at: Warsaw Technical University, Institute of
Heat Engineering, Nowowiejska 25, 00-665 Warsaw,
Poland.
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important problem. A numerical method for cal-
culating the motion and heating including phase
changes for spherical particles during their move-
ment in the hot gas jet with known parameters is
presented. The variation of the flow parameters in
the jet and the thermophysical properties of the gas
and the particles with temperature was taken into
consideration.

Results of calculations made for Al,O; particles
are compared with experimental data.

This problem can be divided in two parts: heat
transfer between the particle and the gas medium
and heat conduction and phase changes inside the
particle.

The heat-transfer problem inside a spherical
particle has an analytical solution. for the case of
constant material parameters only or for some
special cases of variation of material properties with
the radius [1,2]. The heat-transfer problem with
phase change has some analytical solutions for
special simplified cases [3,4]. Heat transfer between
the gaseous medium and spherical particles was
thoroughly examined in the case of “cold” gas. The
authors of [5,6] give the following relation for
Nusselt number:

Nu = 24bRe"Pr". (1)

In some papers [7,8] related to dissociated gases
and high temperature differences, the use of the
correction factor f(T) = (p,H./pshs)’ is recom-
mended. This takes into account the change of gas
parameters inside the boundary layer (the index oo
refers to the gas temperature and s to the tempera-
ture of the particle surface). In the present paper for
the calculations of the heat transfer between the gas
and the particle, equation (1) given in [ 5] was used.
The parameters of the plasma torch type PN-110
used for the numerical calculations are given below:

voltage—52V; argon flow—2.6 Nm?3/h;
current—500 A ; hydrogen flow—0.4Nm3/h;
efficiency—48%;.
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2. PARTICLE MOTION

The particle motion, disregarding the negligible
influence of mass variation on the impulse change,
according to [17] is:

de [

— =075 (V,—0)*C,, 2
d pD( 9 7)°Cp (2)
The drag coefficient C, according to [9] depending
on the Reynolds number range is:

Cp,=24Re™ !, for Re<?2;
Cp,=185Re™ %% for 2 < Re< 500; (3)
Cp =044, for Re > 500.

powder injection

F1G. 1. Model of powder injection.

In our case it is convenient to use (2) in the
following form:
_de Py

v-—=075
dx p'D

Cp(V,— ). 4)

In the case when the gas velocity is varying and the
gas and particle properties depend on the tempera-
ture, i.e. vary with their position, (4) is an Abel type
equation and then no analytical solution exists.

In the case of plasmatrones, where the gas velocity
and the powder injection velocity (Fig. 1) are not
parallel, equation (4) written in the two-dimensional
system is used. The solution of this system can be
obtained numerically.

3. HEAT TRANSFER BETWEEN THE GAS
AND THE PARTICLE SURFACE

From Newton’s law, the heat flux to the particle is

g =a AT, &)

where AT is the temperature difference between gas
and particle surface and « is the heat-transfer
coefficient, which includes the heat transfer by
convection (o), radiation («,) and mass convection
B).

The heat-transfer coefficient due to the heat
convection was taken from [10] with a correction
coefficient from [11] in the form:

P

%, D
Nu=""
=5

‘g

0.6
- (2+0.6Re“2Pr”3)<p7°0”w> . (6)
Pstls
Radiation from the particle (which is only about
59 of the total exchanged heat [12]) was taken into
account by:

o, = —aeTH/AT, (7)

where T, is the particle surface temperature and the
black body radiation constant is ¢ = 5.7 Wm ™2
deg™*. In (7) the heat losses to a low temperature
surrounding were assumed.
The mass convection coefficient 8 [13] can be
taken from
_ /;D _ 1/2¢,.1/3
Sh= D..C = 2+40.6Re'/*Sc'’°. (8)
These coefficients are variable depending on the
local variation of the thermodynamic and flow
parameters.

4. HEAT CONDUCTION INSIDE
THE PARTICLE
4.1. Heat-transfer equation
For non-stationary flow over a body with
temperature dependent properties without external
sources of heat, the heat conduction is described by
the following differential equation

p(T)e,(T) S = VIATIVT] o)
In the case of small particles the usual assumption of
spherical symmetry [14] is made, which leads to the
existence of spherical isothermal surfaces. An ad-
ditional justification for this assumption is the
probable rotation of the particles due to asymmetri-
cal injection of the particles into the jet. In this case
equation (9) written in spherical coordinates
becomes

oT 0 or
et AT = 10
p(They(T) =177 [A( ) (3r:|’ (10)

where r is the distance from the center of the sphere.
The initial temperature distribution is

T(r,0) = f(r)
and the symmetry condition can be written as
oT
or

(11)

=0

r=0

(12)

The remaining boundary conditions for the particle
depend on its state and will be given below for the
different cases considered.
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4.2. The case of a sphere in a one-phase state

In this case for time ¢ > 0 and radius 0 <r < D/2
equation (10) with condition (12) holds. The con-
dition at the outer boundary follows from the heat
balance (5) and is given by:

A(T)al

= (o, +a , T,—T)
or r=D/2 pe

r=D{2

(13)

Tr

0 0/2

4.3. The case of two-phase sphere

When the particle surface reaches the melting
temperature, a phase change process will begin. The
particle consists then of two layers: inner—solid and
outer—liquid, and a phase boundary r, moves inside
the particle. A part of the heat delivered from the gas
will be used in the melting process. For the internal

0 re /2

region of the sphere 0 <r<r.{f) the boundary
conditions for equation (10) are given by (12) at r
= 0 and the following conditions at r = r(¢):

—anT

dry
a + LfP(T;)E (14)

r=rp+0
and

|
T =T

ry—0

=T, (15)

re+0
For the external region, i.e. r(t) < r < D/2, the inner
boundary conditions for equation (10) at r = re(r)
are given also by (14) and (15) and the outer
boundary condition at r = D/2 is given by (13).
Similarly in the case of the solidification of a liquid
sphere the same relations hold, the only difference
being that the outer layer is now solid and the inner
liquid. At the interface of the two phases heat is now
emitted and not absorbed as in the previous case.

HMT. 22/5—8

4.4. The case of intense evaporation

The difference between this case and the one
described above consists in the appearance of a
moving outer sphere boundary, r,, due to evap-
oration of the outer layer of the particle. The heat
transferred from the gas is now used partially for
evaporation, hence the boundary condition (13} will
be modified by addition of a term taking into

Te

Tt

|
|
!
1! !
!
|
|

e 0b

0 I‘f

account the heat of evaporation:

or dr,
A(T)“a? =(0€r+0€p)(7;—7)r4 +Le;0*d-t“ (16)

r=re =re
and in the case of intensive evaporation, the surface
temperature will be equal to the boiling temperature:

T(r,,t)=T,. (17

In this case equation (10) is valid with boundary
conditions (12) at the centre, (14) and (15) at the
solid-liquid interface and (16) and (17) at the outer
boundary.

In the case of a single-phase particle with
evaporation at the surface, the boundary conditions
for equation (10) are {12) at the centre and (16),(17)
at the outer surface.

The above relations were used only in the cases
where the temperature of the particle surface reached
the temperature of evaporation. When it was lower
the conditions described in 4.6. (with temperature
dependent heat of evaporation) are relevant.

4.5. The case of solidification

This case occurs when the temperature of the
surrounding medium and the temperature of the
particle surface drops below the temperature of
solidification:

T,<T,>T, (18)

Te

Y S S

D2
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whereas the outer layer of the particle was liquid. At
the boundary of solidification r, heat will be emitted.
The conditions at this boundary will be analogous to
those described in 4.3.

oT oT dr
MT)— =UT)— L K
( )ar e ( )ar rk+0+ ro(Ty) O (19)
with:
T(n) =T, 20)

The boundary conditions for (10) are then (12)-(15),
(19), (20).

4.6. The case of diffusion of the vaporized particle
material
The diffusion of the vaporized particle material
into the gas can be described as follows:

vaporized mass flux:

dm d
L amrzp e 21
T TPy @y
from Stefan’s law [13]:
dm Po—DPy
— =4nrIMpBIn —L 22
d P o= p(T) 22

where po, py, p(T) are partial pressures respectively
to saturation, melting temperature and a tempera-
ture T, M is the molecular weight.

Substituting (21) into (22):

Jerzy K. Fiszpon

In this case boundary condition (13) with (23)
become:

aTr
A(T)— = (ar+ap)(7;—T)
ér |, r
Po— Py

— L (T)MBI :
) ﬁnpo—p(T)

24)

5. NUMERICAL METHOD OF SOLUTION

As was shown in [15] the non-stationary heat-
transfer problem with a phase change has a unique
solution. To solve this problem in the general case a
closed finite difference scheme was used. This
procedure insures the stability of the solution for any
grid. The time differential in the i-node of the mesh is
approximated by the backward difference operator:

T\ L
o )i

and the space differentials are approximated by
central difference operators in the inner net mesh:

Ty «
6r,~~

or by forward difference operators at the boundary:

(Ti—T;")/At (25)

(Ti+1/2"Ti-1/2)/Ar (26)

(?33-) x (T, ,— T)/Ar. @
or J,

i

dr, = —MBIn Po=Py 23 T is the actual temperature at the radius r, and T;”
de po—p(T) the temperature at the radius r; in the previous time
step differing by Ar from the present step, At is time

difference and Ar the space difference.

0 n—-——r:—,-
re(t) n(t) A7)
m n k
F T N I L
1 2 3 4 M2 M M M N2N N M K2 KK

In the fully developed case [according to (4.5)], the sphere radius can be divided as follows:
—the centre of the sphere (= 0) is at point i = 1, melting radius (r,) at point i = M~ 1, evaporation or
external radius {r,) at point i = K — 1 and solidification radius (r,) at point i = N —1. The point K is outside
the sphere boundary—in gas. The internal solid layer is composed of M — 2 segments of length

m=rg/(M~—2)

and the current radius in this layer is
r,={i—1)m,

For an internal liquid layer and an external solid layer:

n=(r,—r,)/(N—-M),

ry=m{M—2)+n(i+1—M),

and

k= (r,—r)/(K—N),

rp=mM=2)+n(N~M)+k(i+1-N),

(28)
i=123..,M-2,M~1.
i:M—l,M,...,N—Z,Nwl} (@9)
0
i=N—1,N,...,K—2,K-1} 30)
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Evidently in the case described in 42. M = N = K and m = n = k and in the case of (4.3) and (44) N =K

and n = k.

Equation (10) using (25) and (26) can be written as follows:

T +b,T+¢,T,_+d; =0,

where the factors b;, ¢;, d; are:

fori=23.... M—-3,M-2,

i—15\2 4, +4;_,
= —
' i—0.5

s (!
P05/

o
|

fori=M,M+1,... N-3,N-2,

= ~1—¢—dy/T;".

[m(M—2)+n(i—M+O.5)T At A
M —=2)+n(i—M+15)

i [ mM—=2)+n(i—-M+1) ]2 2n*pic, T
Y imM=2)+n(i—-M+15)

b= —1—¢;—d/T,~

i

fori=N,N+1,...,K—-3,K-2,

m(M—2)+n(N—M)+k(i—M+0.5)}2 At Ay
S| M =2)+n(N-M)+k(—M+1.5)

(31)
Aitdivy’
2 2m?pic, T (32)
At(h+2i4,)
Aitdivy’
(33)
At(Ai+7544)
J
Ai+licy
(34)

4 m{M—2)+n(N—M)+k(i—-M+1) ]2 2k%pie, T,
P mM=2)+n(N=M)+k(i—M+1.5)

b= —1-c¢,—d/T;".

The value of the temperature at the points i =1,
i=M-1,i=N—1and i= K—1 can be calculated
from the boundary conditions.

The boundary condition (12) is expanded by the
Taylor series and the first two terms after com-
parison the second derivatives are giving:

Ty—4T,+3T, = 0. (35)

The boundary condition for a stationary external
diameter of the sphere (13) written in the finite
difference form according to (27) is:

A Y
TK—<1+ K 1>TK*1+£TK_2=0
ok o

i.e. it has the same form as equation (31) with the
following factors:
lK—l

o

dK—l = 0,
_ (36)
by 1= —1—cx 1—dg-1/Tg 4
Similarly equations (14) and (19) can be formulated
as (31) with the factors:

AitAiy e
Aithipy ri=riy’

i

d = 2priAr(r.‘+1 —r) (37
' At(Ai+2ivy)
b=—-1-¢,

1

where i = M —1 for equation (14) and i = N—1 for
equation (19) and r are the changes of melting or
solidification radii.

At(Ai+isg)

When the function describing the thermal con-
ductivity of the sphere material is continuous at the
melting temperature, this equation can be simplified
by replacing (4;+4;_,)/2 and (4;+4,,,)/2 by 4,.

In the case of evaporation at the outer boundary,
condition (16) is relevant instead of (13). In difference
form this can be expressed by equation (31) with the
factors:

fori=K—-1,N=Kandn=k,

Ag -

cK_1=—';k—l, by 1= —-1-cg_y, (38)
L,pg_

dy_1 = _eap—AKt 1Are7

where Ar, is the variation of the evaporation radius.
The temperature at the point K is the gas
temperature:

Ty =T, (39)

Then we obtain the following set of equations:
Ty, —4T,+3T, = 0,
T +b T+, T +d; =0,
(i=23,...,K-2,K-1),
Ty =T,

g°

(40)

with factors described as follows:
for the one-phase case by (32) and (36), for the
two-phase case by (32), (33), (36) and (37), for the
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case of evaporation by (32), (33), (37) and (38), for
the case of solidification by (32)~(34), (36), (37).

In the case of diffusion of the particle material the
same set of equation is used, but the value of
evaporated radius can be calculated directly from
(24).

The above set of equations can be easily solved by
the method of the factorization first forward and
then backwards [16].

Looking for a solution in the form:

TLi=hi 1 +gi: Ty
41
fori=K—1,K-2,...,3,2 “1)
the required factors are:
giv1 = —1/(b;+cig,),
hiyy = di+eh)gisrs (42)

fori=23,...,K-2,K-1.

These factors depend on the coefficients of equation
(31) and it is possible to calculate the values of

( DATA INPUT )

Integration of the
equation of motion

Change of the grid ]

]

No Solving of the heat
transfer equation

F1G. 2. Flow chart of computer program.

temperature (41) from the values of g, and h,
[known from (12)].

The convergence and accuracy of the used scheme
is O(h*+1) [16], where the reduced time t=
41At/pc,D? and the reduced co-ordinate h = 2Ar/D.

Values of the phase change radii Ar,, Ar, and Ar,
[in equations (37) and (38)] must be arbitrarily
assumed in the first approximation and they will
result from the iteration process. Equations (15), (17)
and (20) will be used for checking the accuracy of the
results obtained [equation (17) only in case of
intense evaporation].

The values of material parameters, on which the
factors of equation (31) depend, should be taken for
the actual calculated values of the temperature at the
given point. For more accurate calculations an
iterative method was used to obtain the relevant
coefficients.

In Fig. 2 the flow chart of the computer program
is given. This program was made in FORTRAN IV
Extended for the computer CDC-6000 Cyber 70.

6. RESULTS OF CALCULATIONS

A series of calculations for alumina grains with an
initial diameter up to 120pm and velocities of
injection up to 30m/s were made. The results of
calculations made for an Al,O; particle with a
diameter 100pum and an initial velocity 10m/s are
shown on Fig. 3. Five zones are visible:

I—heating to the melting temperature on the
surface ;

II—heating to the evaporation temperature on
the surface with simultaneous melting of the particle
interior and evaporation by diffusion of mass at the
surface;

III—intensive evaporation from the surface with a
temperature equal to T,;

IV—cooling down to obtain the solidification
temperature at the surface;

V—solidification of the particle.

In the first two regions the increase of the particle
temperature is very fast because of a high gas and
surface temperature difference. In the third region,
during the evaporation, the change of the external
diameter is very fast and the temperature differences
inside the particle disappear. The fourth region
begins when the particle leaves the high temperature
region of the jet. The temperature drops at the
surface faster than at the centre. When the surface
temperature reaches the solidification temperature
(region V), the process of solidification begins. The
profiles of the temperature inside this particle at the
end of region 1 (curve 1), region II (curve 2), and in
region V (curve 3) are shown at the Fig. 4. They
appear to be parabolic.

Results of calculations for alumina particles in-
jected with initial velocities from 3 to 30m/s are
shown on Fig. 5. The influence of the particle initial
velocity can be seen. Particles with too low an
injection velocity do not enter into the high



Melting of powder grains in a plasma flame

755

x
©.
1
Ea
E]
>
4
1
-
]
N ————————r—T—— T —————————
Fo 2 4 8 0 12 % 3 8 20
Jet axis (cm)
S
R _DD)
[= § i Eq Cooling + surface evaporation Solidification
- E 3
W
E-R-Y
F h _—
..ﬁ 5(§1 \ e (8
L [T L
N o=
o \0\
8 :§ \ L = > —e &8
- 2 5 \ Ttr=0) - _.3_3
XSG B
35 Balf| | ; 8§
2 ] / ! 5
.§ &g_ / r .3§
b — 1 o ,8
S oy A B
_ pe ; ' 5
PO « I I E—
0 2 ] 6 8 10 12 % % 18 20

Jet axis {cm)

FI1G. 3. The melting process of an alumina particle 100 pm dia injected with a velocity 10m/s.

temperature region of the jet and are not melted.
With too large an injection velocity the dwell time in
the high temperature region of the jet is too small for
melting to occur. There are some values of injection
velocity for which the particle evaporation rate is too
large. This can be seen on Fig. 5a where the
trajectories of particles are presented together with
curves indicating when the melting or evaporation
temperature are achieved. The lines are also shown
where the particle is melted up to one half of its
radius, the particle is completely melted and constant
evaporation rate lines (at which the sphere radius is
reduced by 10%, 20%, 30%) are presented. Maximum
evaporation of 36%; was obtained for the particle
injected with a velocity of 13m/s. This is visible on
Fig. 5b. The influence of the initial velocity on the
particle velocity (Fig..5c) and temperature (Fig. 5d)
are also shown.

To demonstrate the influence of the diameter
changes on the trajectory, some calculations were
made for the particles with a fixed diameter (and

mass). Comparison of the obtained trajectories (Fig.
6) shows that these differences do not exceed 10%.

Using the results of the numerical calculations for
Al,O; grains with different initial diameters, the
regions where the grains with a given diameter
(initial) are completely melted (Fig. 7) can be shown.
These regions are below the jet axis on the side
opposite to the point of injection. This is associated
with the method of powder injection. It was found
that Al,O; particles of a diameter 120pum are not
completely melted in any region of the jet and the
particles of a diameter 30 um or less are completely
evaporated in some regions.

The influence of non-perpendicular injection of
powder was examined (Fig. 8). The influence of the
angle of injection (in the plane formed by the point
of injection and the jet axis) —¢@— is very small and
does not exceed 4% for Al,O; particles of 50 um
diameter injected with a velocity of 10m/s at an
angle ¢ = 15°. The influence of eccentric injection is
much higher. The same size grain in the plane
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passing at a distance b = 2mm from the jet axis has
an external diameter 17%, greater and velocity 13%
smaller than the grain crossing the jet axis.

7. COMPARISON OF THE CALCULATED
AND EXPERIMENTAL RESULTS*

Experimental results refer to Al,O; powder with
an average diameter 47um (the diameters of the
particles were between 30pm and 67 um) while the
calculations were made for particles with a few
selected diameters. For the comparison of the
available results the powder was divided into three
fractions: 35-45um, 45-55pm and 55-65 pm and it
was assumed that the particles enclosed in these
fractions have diameters of 40, 50, and 60pm
respectively. With the known experimental injection
velocities of particles (Fig. 9) and their granulometric
distribution at the inlet to the jet (curve 1, Fig. 10) it
was possible to calculate the distributions at the jet
exit (curve 3, Fig. 10) and to compare it with the
experimental curve (2, Fig. 10). The calculated curve
is about 25% wider and its maximum is displaced by
about 20% into the direction of lower diameters than
the experimental curve. This difference may be due to
neglecting in the calculations the actual scatter of
particle trajectories with respect to the jet axis. The
numerical calculations are strictly correct only for
particles whose trajectories pass through the jet axis.

b)
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80 ==X 20
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6
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d) 1 por8—6-5 %
3000 [ ] / \\\
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F1G. 5. Variation of trajectories (a), diameters (b), velocities (c) and surface temperatures (d) of Al,O,
50 um dia particles, injected perpendicularly with different velocities, versus the distance from the jet
origin.

* Allexperimental results were taken from J. Lesinski measurements — Ph.D. Thesis made in the Institute of Nuclear Research,

05-400, Otwock, Poland, 1975.
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Fi1G. 6. Dependence of the position of the particle in the jet cross-section, distant 200mm from the jet
origin, on the injection velocity of AL, O, particles of initial diameter 50 um. Curve 1—taking into account
the variation of the diameter, curve 2—for constant diameter particles.
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F1G. 7. Regions of complete melting of alumina particles injected perpendicularly into the plasma jet.

The observed 20%; difference between the positions of
the maxima of the calculated and measured velocity
distribution (Fig. 11) may be due to the same reason
as above. As shown in Section 6 (Fig. 8) particles
eccentrically injected have velocities and diameter
changes much lower than those passing through the

jet axis. The variation of the particles’ average
temperature with distance from the jet exit is shown
on Fig. 12. The difference between the calculated
{continuous line) and measured (circles with range of
accuracy indicated by bars) average particle
temperature is only about 15%,.
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F1G. 8. Variation of some parameters of Al,O; 50 um dia particles, injected non-perpendicularly into the
plasma jet vs distance from jet origin (vo/¢/b). Curve 1—(10/0/0), 2—(10/—15/0), 3—(10/+15/0), 4—
(10/0/2), 5—(10/0/3), 6-—(5/0/0), 7—(5/0/2), 8—(5/0/3).

From the above it can be concluded that the which differ appreciably, or in cases when these
qualitative agreement between the principal meas- data were not available they were calculated using
ured and calculated parameters is satisfactory and approximate formulae,
the divergences can be explained by the influence of ~ —there exists a small temperature difference between
the following factors: the evaporating particle surface and the evap-
—calculations were made for particles of selected oration temperature of the particle medium, this

diameters, with trajectories in the plane passing difference was neglected as this value was

through the jet axis (i.e. through the region with unknown,

maximum thermophysical jet parameters) while in ~ —the measured powder velocities were obtained

practice powder is introduced into the jet as a from a small number of measurements and

divergent cluster having a certain width and a exhibited a large velocity scatter,

disperse granulation, —the measurements of the powder temperature were
—the thermophysical properties of plasma gases and based onto rough assumptions. In particular the

particle material were taken from published data, material emissivity (at the temperature higher than
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FIG. 9. Velocity distribution of Al,O, particles at the inlet to the plasma jet (for two rates of flow of the
particles carrying gas).
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FI1G. 13. Comparison of the time necessary to melt a spherical particle obtained in present model and in
model of Dresvin [17].

temperature of fusion) was unknown and the

important influence of particle diameter scatter on

the deduced temperature was not taken into
account.

The results of numerical calculations were com-
pared with the known approximate formula [17]
giving the time necessary for complete melting of
spherical particle. This formula is based on the
assumption of uniform temperature inside the par-
ticle, constant temperature and velocity of the
medium and that the particle is stationary with

respect to the gas medium. Figure 13 shows the
calculation using {17] (curves 4 and 5) melting times
for Al,O; and W as a function of particle diameter.
These times were calculated for an Ar-H, plasma
temperature of 8000K, Curves 2 and 3 were
obtained from numerical calculations using the
method given in this paper for constant gas
temperature and velocity (7, =8000K, V, 6=
540m/s). Curve 1 shows the minimum necessary
time for melting Al,O; grains under actual con-
ditions according to the present calculations. A large
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difference between these calculations, especially for
particles with greater diameters, is observed. From
this figure it appears that approximate formulae such
as the one given by (17) do not take into account the
main factors which influence the investigated
process.

8. CONCLUSIONS

The method of calculation used in this paper for
heating processes including phase changes, for
spherical particles moving in a hot gas stream, allows
for the change of jet parameters and the variation
with temperature of the physical properties of the gas
medium and of the particle.

It should be noted that the numerical method
presented above does not include the influence of
real particle injection conditions which are stochastic
in the velocity vector and particle size distributions.
It would be useful to develop this method to include
such effects.
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FUSION DES GRAINS SPHERIQUES DANS UN JET DE PLASMA

Résumeé—Une méthode numerique pour la détermination de I'échange du chaleur et de la variation de

phase entre une sphére solide et le plasma est deduit. Le variation des propriétés thermophysiques de

particule solide et de plasma avec la temperature sons inclus. Un example des particules de Al,O,

chauffées dans un jet de plasma d’argon-hydrogene est donne. La comparaison des résultats numeriques

avec les résultats expérimentaux concernant la température de la surface, de la velocité et du diamétre de
particule est satisfaisant.

SCHMELZEN VON PULVER-KORNERN IN EINER PLASMA-FLAMME

Zusammenfassung —Zur Berechnung des Wirmeiibergangs und des Phasenwechselvorganges eines

kugelformigen Teilchens in einer Strahistrémung wird eine numerische Berechnungsmethode aufgestellt.

Dabei wird die Temperaturabhingigkeit der thermophysikalischen Eigenschaften des Teilchens und des

Plasmas in Betracht gezogen. Als Beispiel werden Aluminiumteilchen betrachtet, die in einem

Argon-Wasserstoff-Plasmastrahl aufgeheizt werden. Die numerischen Ergebnisse zeigen gute Uberein-

stimmung mit experimentell gemessenen Werten der Oberflichentemperaturen des Teilchendurchmessers
und der Teilchengeschwindigkeit.

TIJIABJIEHME 3EPEH MOPOIIKA B ITJIABMEHHOM ®AKEJIE

Aunoraums — PaspaGoTan 4HCACHHBIH METO] HCCNEAOBAHMA NpPOLECCOB TemroobMmeHa tha3oBsix
M3IMEHEHHH CQepHIecKofl YacTHUL B CTPYHHOM NOTOKe. VUHTHBACTCS TEMNEPATYPHAR 3aBHCHMOCTb
TeMIO(PHIATECKUX XAPAKTEPHCTHK YACTHIB! ¥ Masmbl. PacCMOTpeH NpHMep Harpesa aTIOMHHHEBBIX
YacTHI B CTpYe aproHo-BOROPOIHON miasmbl TlonyueHo XOpomiee COBHAJCHME MHCICHHMX DPE3YITb-
TATOB ¢ JaHHBIMH H3MEPESHHH TEMIEPATYPhi NOBEPXHOCTH, CKOPOCTH H IHAMETPA YACTHIL



