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Abstract -~A numerical method to determine the heat transfer and phase change processes of a spherical 
particle in a jet stream is deduced. The variations of the thermophysical properties of the particle and of 
the plasma with temperature are taken into account. An example of alumina particles heated in an 
argon hydrogen plasma jet is given. The numerical results, compared with experimental measurements of 

surface temperature, particle velocity and diameter show good agreement. 

NOMENCLATURE 

mixture concentration; 
specific heat ; 
drag coefficient; 
particle diameter; 
molecular diffusion coefficient ; 
latent heat of phase change; 
heat flux ; 
radius ; 
time ; 
temperature ; 
velocity ; 
Nusselt number; 
Prandtl number; 
Reynolds number; 
Schmidt number; 
Sherwood number. 

Greek symbols 

a, heat transfer coefficient ; 

83 mass transfer coefficient; 

6 material emittance; 

A, heat conductivity; 

rl, viscosity ; 

PY density. 

Subscripts 

Quantities without subscripts refer to particle 

9, gas; 

: 
boundary ; 
fusion ; 

e, evaporation; 

k, solidification. 

1. INTRODUCTION 

IN THE use of plasma torches for spraying, the 
intensive heat transfer between the gaseous medium 
and the solid or liquid particles contained in it is an 

*Presently at: Warsaw Technical University, Institute of 
Heat Engineering, Nowowiejska 25, 00-665 Warsaw, 
Poland. 

important problem. A numerical method for cal- 
culating the motion and heating including phase 
changes for spherical particles during their move- 
ment in the hot gas jet with known parameters is 
presented. The variation of the flow parameters in 
the jet and the thermophysical properties of the gas 
and the particles with temperature was taken into 
consideration. 

Results of calculations made for Al,O, particles 

are compared with experimental data. 
This problem can be divided in two parts: heat 

transfer between the particle and the gas medium 
and heat conduction and phase changes inside the 
particle. 

The heat-transfer problem inside a spherical 

particle has an analytical solution for the case of 
constant material parameters only or for some 
special cases of variation of material properties with 
the radius [l, 21. The heat-transfer problem with 
phase change has some analytical solutions for 
special simplified cases [3,4]. Heat transfer between 
the gaseous medium and spherical particles was 
thoroughly examined in the case of “cold” gas. The 
authors of [5,6] give the following relation for 
Nusselt number: * 

Nu = 2 + hRe”Pr”. (1) 

In some papers [7,8] related to dissociated gases 
and high temperature differences, the use of the 
correction factor f(T) = (P~~~~/PJJ is recom- 
mended. This takes into account the change of gas 
parameters inside the boundary layer (the index CC 
refers to the gas temperature and s to the tempera- 
ture of the particle surface). In the present paper for 
the calculations of the heat transfer between the gas 
and the particle, equation (1) given in [5] was used. 

The parameters of the plasma torch type PN-110 
used for the numerical calculations are given below: 

voltage--52 V; argon flow-2.6 Nm3/h; 

current+500A; hydrogen flow-0.4Nm3/h; 

efficiency-48%. 
149 
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2. PARTICLE MOTION 

The particle motion, disregarding the negligible 
influence of mass variation on the impulse change, 
according to [ 171 is: 

da 
dt = 0.75 $ (t;,-@CD. (2) 

The drag coefficient C, according to [9] depending 
on the Reynolds number range is: 

C, = 24ReK’. for Re<2; 

C = 18.5Re-0.6, for 2 < Re < 500; 
c; = 0.44, 

(3) 
for Re > 500. 

FIG. 1. Model of powder injection 

In our case it is convenient to use (2) in the 
f&lowing form : 

GE= 0.75&C&-O)? 
P,D 

In the case when the gas velocity is varying and the 
gas and particle properties depend on the tempera- 
ture, i.e. vary with their position, (4) is an Abel type 
equation and then no analytical solution exists. 

In the case of plasmatrones, where the gas velocity 
and the powder injection velocity (Fig. 1) are not 
parallel, equation (4) written in the two-dimensional 
system is used. The solution of this system can be 
obtained numerically. 

3. HEAT TRANSFER BETWEEN THE GAS 
AND THE PARTICLE SURFACE 

From Newton’s law, the heat flux to the particle is 

q = a.AT, (5) 

where AT is the temperature difference between gas 
and particle surface and s( is the heat-transfer 
coefficient, which includes the heat transfer by 
convection (c(,), radiation (a,) and mass convection 

(I0 
The heat-transfer coefficient due to the heat 

convection was taken from [lo] with a correction 
coefficient from [ 1 l] in the form : 

Nu = y = (2+0.6Re”2Py”3) !Ikfk 
c ! 

0.6 

(6) 

9 Ps% 

Radiation from the particle (which is only about 
5% of the total exchanged heat [12]) was taken into 
account by : 

~1, = -mTs4/AT, (7) 

where T, is the particle surface temperature and the 

black body radiation constant is r~ = 5.7 Wm-’ 
deg-‘. In (7) the heat losses to a low temperature 
surrounding were assumed. 

The mass convection coefficient fl [ 131 can be 
taken from 

Sh = pF = 2 +0.(jRe’~2Sc”3. (8) 
“h 

These coefficients are variable depending on the 
local variation of the thermodynamic and flow 
parameters. 

4. HEAT CONDUCTION INSIDE 
THE PARTICLE 

4.1. Heat-tramfer equation 
For non-stationary flow over a body with 

temperature dependent properties without external 
sources of heat, the heat conduction is described by 
the following differential equation 

p(T)c,(T) g- = V[i(T)VT]. 

In the case of small particles the usual assumption of 
spherical symmetry [14] is made, which leads to the 
existence of spherical isothermal surfaces. An ad- 

ditional justification for this assumption is the 
probable rotation of the particles due to asymmetri- 
cal injection of the particles into the jet. In this case 
equation (9) written in spherical coordinates 

becomes 

p(T)c,(T) g = re2 g [i(T g], (10) 

where Y is the distance from the center of the sphere. 
The initial temperature distribution is 

T(r, 0) = .f(r) (11) 

and the symmetry condition can be written as 

iiT 
= 0. _I 

cr r=O 
(12) 

The remaining boundary conditions for the particle 
depend on its state and will be given below for the 
different cases considered. 
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4.2. The case ofa sphere in a one-phase state 
In this case for time t > 0 and radius 0 < r < D/2 

equation (10) with condition (12) holds. The con- 
dition at the outer boundary follows from the heat 
balance (5) and is given by: 

I(T)% _ = (LY,+Cl&Tg-T) . (13) 
r-D/Z r=D,Z 

0 m 

4.3. The case of two-phase sphere 
When the particle surface reaches the melting 

temperature, a phase change process will begin. The 
particle consists then of two layers: inner-solid and 
outer-liquid, and a phase boundary rf moves inside 
the particle. A part of the heat delivered from the gas 
will be used in the melting process. For the internal 

region of the sphere 0 < I’ < r,(t) the boundary 
conditions for equation (10) are given by (12) at r 
= 0 and the following conditions at r = rr(t): 

wg _ _ 
1-r, 0 

l?T 

= ?C- r=rr+* 
+ Q(q) 2 (14) 

and 

For the external region, i.e. rs(t) < r < D/2, the inner 
boundary conditions for equation (10) at r = rr(t) 
are given also by (14) and (15) and the outer 
boundary condition at r = D/2 is given by (13). 

Similarly in the case of the solidification of a liquid 
sphere the same relations hold, the only difference 
being that the outer layer is now solid and the inner 
liquid. At the interface of the two phases heat is now 
emitted and not absorbed as in the previous case. 

“MT. 22/S-H 

4.4. The case of intense evaporation 
The difference between this case and the one 

described above consists in the appearance of a 
moving outer sphere boundary, rer due to evap- 
oration of the outer layer of the particle. The heat 
transferred from the gas is now used partially for 
evaporation, hence the boundary condition (13) will 
be modified by addition of a term taking into 

account the heat of evaporation: 

and in the case of intensive evaporation, the surface 
temperature will be equal to the boiling temperature: 

T(r,, t) = T,. (17) 

In this case equation (10) is valid with boundary 
conditions (12) at the centre, (14) and (15) at the 
solid-liquid interface and (16) and (17) at the outer 
boundary. 

In the case of a single-phase particle with 
evaporation at the surface, the boundary conditions 
for equation (10) are (12) at the centre and (16),(17) 
at the outer surface. 

The above relations were used only in the cases 
where the temperature of the particle surface reached 
the temperature of evaporation. When it was lower 
the conditions described in 4.6. (with temperature 
dependent heat of evaporation) are relevant. 

4.5. The case of solid$cation 
This case occurs when the temperature of the 

surrounding medium and the temperature of the 
particle surface drops below the temperature of 
solidification : 

I Te I 

i~~~~llll~llllllllliillliilllliJ 
0 

ft ‘k 
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whereas the outer layer of the particle was liquid. At 
the boundary of solidification rk heat will be emitted. 
The conditions at this boundary will be analogous to 
those described in 4.3.: 

with: 

T(Tk) = T,. (20) 

The boundary conditions for (10) are then (12))( 15), 

(19) (20). 

4.6. The case o~d~~s~on ofthe ua~orized partide 
material 

The diffusion of the vaporized particle material 
into the gas can be described as follows: 

vaporized mass flux: 

from Stefan’s law [13] : 

(21) 

dm 
- = 471$Mfl In PO-P/ 
dt PO-P(T) ’ 

(22) 

where pe, pf, p(T) are partial pressures respectively 
to saturation, melting temperature and a tempera- 
ture ?‘, M is the molecular weight. 

Substituting (21) into (22): 

dr, - 
dt 

_ -M/jlnm. 
PO-P(T) 

(23) 

In this case boundary condition 
become: 

1(T); = (cl,-tcr,)(T,-T) 
l-e II. 

(13) with (23) 

-L,(T)Mfiln “-” 
po-po’ (24) 

5. NUMERICAL METHOD OF SOLUTION 

As was shown in [15] the non-stationary heat- 
transfer problem with a phase change has a unique 
solution. To solve this problem in the general case a 
closed finite difference scheme was used. This 
procedure insures the stability of the solution for any 
grid. The time differential in the i-node of the mesh is 
approximated by the backward difference operator: 

(25) 

and the space differentials are approximated by 
central difference operators in the inner net mesh: 

or by forward difference operators at the boundary: 

= (q+ 1 - lJ,‘Ahr. (27) 

PJ is the actual temperature at the radius ri and T- 
the temperature at the radius ri in the previous time 
step differing by At from the present step, At is time 
difference and Ar the space difference. 

rk ft) r,ff) 

I , 
1234 M-2M-lMMd I%? Ml N NU K-2 K-l K 

In the fully developed case [according to (4.5)-j, the sphere radius can be divided as follows: 
-the centre of the sphere (r = 0) is at point i = 1, melting radius (rf) at point i = M - I, evaporation or 
external radius (r,) at point i = K - 1 and solidification radius (r,J at point i = N - 1. The point K is outside 
the sphere boundary-in gas. The internal solid layer is composed of M - 2 segments of length 

m = r,j(M - 2) 

and the current radius in this layer is 

ri = (i- l)m, i= 1,2,3 ,..., M-2,&f-1. 1’ 

(28) 

For an internal liquid layer and an external solid layer: 

n = (rk - rr)l(N - M), 

and 

ri=m(M-2)+n(i+l-M), i= M-1,M ,..a, N-2,N-1 1 

k = (tk - r,J(K - N), 
ri=m(M-2)+n(N-M)+k(i+l-N), i= N-&N ,..., K-2,K-1. 

(2% 

(30) 
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Evidently in the case described in 4.2. M = N = K and m = n = k and in the case of (4.3) and (4.4) N = K 

and n = k. 

Equation (10) using (25) and (26) can be written as follows: 

~+, +bi~+Ci~-,+di= 0, (31) 

where the factors bi, ci, di are: 

fori=2,3 ,..., M-3,M-2, 

bi = - 1 -ci-d,/T--. 
J 

fori=M,M+l,..., N-3,N-2, I 

m(M-2)+n(i-M+O.S) 21i+li_1 

ci = m(M-2)+n(i-M+l.S) 1 /zi+li+, ’ 
d. = m(M-2)+n(i-M+l) ’ 2nzpicpiT- 

’ [m(M-Z)+n(i-M+l.S) At(li+li+l)’ 1 
bi = - 1 -ci-di/T- 

fori=N,N+l,..., K-3,K-2, 

m(M-2)+n(N-M)+k(i-M+0.5) 2ii+li-I 

m(M-2)+n(N-M)+k(i-M+l.5) I li+li+l’ 

d, =_ m(M-2)+n(N-M)+k(i-M+l) 2 2kzpicpiT- 

’ [m(M-2)+n(N-M)+k(i-M+1.5) At(li+ii+l)’ 1 

(32) 

(33) 

(34) 

b, = - 1 -ci-di/7;-. 1 

The value of the temperature at the points i = 1, 
i=M-l,i=N-landi=K-lcanbecalculated 
from the boundary conditions. 

When the function describing the thermal con- 

The boundary condition (12) is expanded by the 
ductivity of the sphere material is continuous at the 

Taylor series and the first two terms after com- 
melting temperature, this equation can be simplified 

parison the second derivatives are giving: 
by replacing (li+1i-1)/2 and (li+ii+,)/2 by li. 

In the case of evaporation at the outer boundary, 
T3-4T2+3T, = 0. (35) condition (16) is relevant instead of (13). In difference 

The boundary condition for a stationary external 
form this can be expressed by equation (31) with the 

diameter of the sphere (13) written in the finite 
factors: 

difference form according to (27) is: fori=K-l,N=Kandn=k, 1 

&-1 
TK_, +p 

crk 
TK-2 = 0 

4-l 
CK-1 = -, b,_, = -l-c,_,, 

ak 
i (38) 

i.e. it has the same form as equation (31) with the -LP,-1 Ar 
d,_, = ~ 

following factors: crAt e’ 

A,-, 
CK-1 = ~ d,_, = 0, 

1 

where Ar, is the variation of the evaporation radius. 
ak ’ 

(36) 
The temperature at the point K is the gas 

b,_, = -l-c,_,-d,_,/Ti,. temperature: 

Similarly equations (14) and (19) can be formulated TK= Tg. (39) 

as (31) with the factors: 

Li+li-l ri+l-ri 

1 

Then we obtain the following set of equations: 

ci = 11+11,1 ri-ri_l ’ T,-4T2+3T, = 0, 7 

d, = 2Lfp&(ri+ I - ri) 
I 

At(li+L<+,) ’ 
(37) q+,+biT+ciL’_,+di = 0, 

(i= 2,3 ,..., K-2,K-l), 
(40) 

bi = -l-c,, I G = TB, 1 

where i = M - 1 for equation (14) and i = N - 1 for with factors described as follows: 

equation (19) and r are the changes of melting or for the one-phase case by (32) and (36), for the 

solidification radii. two-phase case by (32), (33), (36) and (37), for the 
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case of evaporation by (32), (33), (37) and (38) for 
the case of solidification by (32)-(34), (36), (37). 

In the case of diffusion of the particle material the 
same set of equation is used, but the value of 
evaporated radius can be calculated directly from 

(24). 
The above set of equations can be easily solved by 

the method of the factorization first forward and 
then backwards [ 161. 

Looking for a solution in the form: 

T=hi+l+gi+lT+l 

for i= K-l,K-2 ,..., 3,2 1 
(41) 

the required factors are: 

si+i = - l/(bi + cigi), 

hi+, = (di+cihi)gi+i, 

1’ 

(42) 
for i=2,3 ,.._, K-2,K-1. 

These factors depend on the coefficients of equation 
(31) and it is possible to calculate the values of 

lntegrcftion d the r quution of motion 

Change of the grid 

Solvin of the heot 
trans er equation ? 

I Results out& 1 

FIG. 2. Flow chart of computer program. 

temperature (41) from the values of gi and h, 
[known from (12)]. 

The convergence and accuracy of the used scheme 

is O(h2+t) [16], where the reduced time t = 
41Atlpc,D2 and the reduced co-ordinate h = 2ArlD. 

Values of the phase change radii Ar,, Ar, and Ar, 

[in equations (37) and (38)] must be arbitrarily 
assumed in the first approximation and they will 
result from the iteration process. Equations (15), (17) 
and (20) will be used for checking the accuracy of the 
results obtained [equation (17) only in case of 
intense evaporation]. 

The values of material parameters, on which the 

factors of equation (31) depend, should be taken for 
the actual calculated values of the temperature at the 
given point. For more accurate calculations an 
iterative method was used to obtain the relevant 
coefficients. 

In Fig. 2 the flow chart of the computer program 

is given. This program was made in FORTRAN IV 

Extended for the computer CDC-6000 Cyber 70. 

6. RESULTS OF CALCULATIONS 

A series of calculations for alumina grains with an 
initial diameter up to 120um and velocities of 
injection up to 30m/s were made. The results of 
calculations made for an Al,O, particle with a 
diameter lOOurn and an initial velocity lOm/s are 

shown on Fig. 3. Five zones are visible: 
I-heating to the melting temperature on the 

surface ; 
II-heating to the evaporation temperature on 

the surface with simultaneous melting of the particle 
interior and evaporation by diffusion of mass at the 
surface ; 

III-intensive evaporation from the surface with a 

temperature equal to T, ; 
IV-cooling down to obtain the solidification 

temperature at the surface; 
V-solidification of the particle. 

In the first two regions the increase of the particle 
temperature is very fast because of a high gas and 
surface temperature difference. In the third region, 
during the evaporation, the change of the external 
diameter is very fast and the temperature differences 
inside the particle disappear. The fourth region 
begins when the particle leaves the high temperature 
region of the jet. The temperature drops at the 
surface faster than at the centre. When the surface 
temperature reaches the solidification temperature 
(region V), the process of solidification begins. The 
profiles of the temperature inside this particle at the 
end of region I (curve l), region II (curve 2), and in 
region V (curve 3) are shown at the Fig. 4. They 

appear to be parabolic. 
Results of calculations for alumina particles in- 

jected with initial velocities from 3 to 30m/s are 
shown on Fig. 5. The influence of the particle initial 
velocity can be seen. Particles with too low an 
injection velocity do not enter into the high 
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FIG. 3. The melting process of an alumina particle 100 pm dia injected with a velocity lOm/s. 

temperature region of the jet and are not melted. 
With too large an injection velocity the dwell time in 
the high temperature region of the jet is too small for 
melting to occur. There are some values of injection 
velocity for which the particle evaporation rate is too 
large. This can be seen on Fig. 5a where the 
trajectories of particles are presented together with 
curves indicating when the melting or evaporation 
temperature are achieved. The lines are also shown 
where the particle is melted up to one half of its 
radius, the particle is completely melted and constant 
evaporation rate lines (at which the sphere radius is 

reduced by lo%, 20’?, 30%) are presented. Maximum 
evaporation of 36% was obtained for the particle 
injected with a velocity of 13m/s. This is visible on 
Fig. 5b. The influence of the initial velocity on the 
particle velocity (Fig.. 5c) and temperature (Fig. 5d) 
are also shown. 

To demonstrate the influence of the diameter 
changes on the trajectory, some calculations were 
made for the particles with a fixed diameter (and 

mass). Comparison of the obtained trajectories (Fig. 
6) shows that these differences do not exceed 10%. 

Using the results of the numerical calculations for 
Al,O, grains with different initial diameters, the 
regions where the grains with a given diameter 
(initial) are completely melted (Fig. 7) can be shown. 
These regions are below the jet axis on the side 
opposite to the point of injection. This is associated 
with the method of powder injection. It was found 
that Al,O, particles of a diameter 120um are not 
completely melted in any region of the jet and the 
particles of a diameter 30um or less are completely 
evaporated in some regions. 

The influence of non-perpendicular injection of 
powder was examined (Fig. 8). The influence of the 
angle of injection (in the plane formed by the point 
of injection and the jet axis) -cp- is very small and 
does not exceed 4% for Al,O, particles of 50um 
diameter injected with a velocity of lOm/s at an 
angle cp = 15”. The influence of eccentric injection is 
much higher. The same size grain in the plane 
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0 42 06 0.0 R 
FIG. 4. Temperature profiles of an Al,O, lOOurn dia 
particle injected perpendicularly to the jet axis with a 

velocity of lOm/s. 

an average diameter 47pm (the diameters of the 
particles were between 30nm and 67um) while the 
calculations were made for particles with a few 
selected diameters. For the comparison of the 
available results the powder was divided into three 
fractions: 35-45 pm, 45-55 urn and 55-65 pm and it 
was assumed that the particles enclosed in these 
fractions have diameters of 40, 50. and 60nm 
respectively. With the known experimental injection 
velocities of particles (Fig. 9) and their granulometric 
distribution at the inlet to the jet (curve 1, Fig. 10) it 
was possible to calculate the distributions at the jet 
exit (curve 3, Fig. 10) and to compare it with the 
experimental curve (2, Fig. 10). The calculated curve 
is about 25% wider and its maximum is displaced by 
about 20% into the direction of lower diameters than 
the experimental curve. This difference may be due to 
neglecting in the calculations the actual scatter of 
particle trajectories with respect to the jet axis. The 
numerical calculations are strictly correct only for 
particles whose trajectories pass through the jet axis. 

a) bl 

passing at a distance b = 2mm from the jet axis has 
an external diameter 17% greater and velocity 13% 
smaller than the grain crossing the jet axis. 

7. COMPARISON OF THE CALCULATED 
AND EXPERIMENTAL RESULTS’ 

Experimental results refer to Al,O, powder with 

dl T 

2500 

FIG. 5. Variation of trajectories (a), diameters (b), velocities (c) and surface temperatures (d) of Al,03 
50um dia particles, injected perpendicularly with different velocities, versus the distance from the jet 

origin. 

*Allexperimentalresultsweretakenfrom J.Lesinskimeasurements-Ph.D.Thesismadein theInstituteofNuclear Research, 
05-400, Otwock, Poland, 1975. 
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FIG. 6. Dependence of the position of the particle in the jet cross-section, distant 200mm from the jet 
origin, on the injection velocity of AI@, particles of initial diameter 50pm. Curve 1 -taking into account 
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FIG. 7. Regions of complete melting of alumina particles injected perpendicularly into the plasma jet. 

751 

The observed 20% difference between the positions of jet axis. The variation of the particles’ average 
the maxima of the calculated and measured velocity temperature with distance from the jet exit is shown 
distribution (Fig. 11) may be due to the same reason on Fig. 12. The difference between the calculated 
as above. As shown in Section 6 (Fig. 8) particles (continuous line) and measured (circles with range of 
eccentrically injected have velocities and diameter accuracy indicated by bars) average particle 
changes much lower than those passing through the temperature is only about 15%. 
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I la) I 

0 20 40 60 80 la0 130 140 160 180 200 X(mm) 

FIG. 8. Variation of some parameters of Al,O, SOpm dia particles, injected non-perpendicularly into the 
plasma jet vs distance from jet origin (u,/cp/b). Curve l-(10/0/0), 2-(lO/- 15/O), 3-(lo/+ 15/O), 4- 

(10/0/2), 5-(10/O/3), 6-(5/O/O), 7-(5/O/2), 8-(5/O/3). 

From the above it can be concluded that the 
qualitative agreement between the principal meas- 
ured and calculated parameters is satisfactory and 

the divergences can be explained by the influence of 
the following factors: 
-calculations were made for particles of selected 

diameters, with trajectories in the plane passing 
through the jet axis (i.e. through the region with 
maximum thermophysical jet parameters) while in 
practice powder is introduced into the jet as a 
divergent cluster having a certain width and a 
disperse granulation, 

-the thermophysical properties of plasma gases and 
particle material were taken from published data, 

which differ appreciably, or in cases when these 
data were not available they were calculated using 
approximate formulae, 

-there exists a small temperature difference between 
the evaporating particle surface and the evap- 
oration temperature of the particle medium, this 
difference was neglected as this value was 
unknown, 

-the measured powder velocities were obtained 
from a small number of measurements and 
exhibited a large velocity scatter, 

-the measurements of the powder temperature were 
based onto rough assumptions. In particular the 
material emissivity (at the temperature higher than 
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FIG. 9. Velocity distribution of Al,O, particles at the inlet to the plasma jet (for two rates of flow of the 
particles carrying gas). 

FIG. 10. Distribution of the diameters of particles used in experiments: l-at the inlet into the jet, 2-at 
the jet outlet (measured), 3-at the jet outlet (calculated). 

FIG. II. Velocity distribution of the A&O, particles in the plasma jet. 
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Fro. 12. Variation of the average temperature of the particles with the distance from the jet origin 

FIG. 13. Comparison of the time necessary to melt a spherical particle obtained in present model and in 
model of Dresvin [17]. 

temperature of fusion) was unknown and the 
important influence of particle diameter scatter on 
the deduced temperature was not taken into 
account. 
The results of numerical calculations were com- 

pared with the known approximate formula [17] 
giving the time necessary for complete melting of 
spherical particle. This formula is based on the 
assumption of uniform temperature inside the par- 
ticle, constant temperature and velocity of the 
medium and that the particle is stationary with 

respect to the gas medium. Figure 13 shows the 
calculation using [17] (curves 4 and 5) melting times 
for A1,03 and W as a function of particle diameter. 
These times were calculated for an Ar-H, plasma 
temperature of 80OOK, Curves 2 and 3 were 
obtained from numerical calculations using the 
method given in this paper for constant gas 
temperature and velocity (T, = 8000 K, V, = 
540m/s). Curve 1 shows the minimum necessary 
time for melting Al,O, grains under actual con- 
ditions according to the present calculations. A large 
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difference between these calculations, especially for 
particles with greater diameters, is observed. From 
this figure it appears that approximate formulae such 
as the one given by (17) do not take into account the 

main factors which influence the investigated 
process. 

8. CONCLUSIONS 

The method of calculation used in this paper for 
heating processes including phase changes, for 
spherical particles moving in a hot gas stream, altows 
for the change of jet parameters and the variation 
with temperature of the physical properties of the gas 
medium and of the particle. 

It should be noted that the numerical method 
presented above does not include the influence of 
real particle injection conditions which are stochastic 
in the velocity vector and particle size distributions. 
It would be useful to develop this method to include 
such effects. 
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FUSION DES GRAINS SPHERIQUES DANS UN JET DE PLASMA 

R&sum&-Une metbode numerique pour la d&termination de Rchange du chaleur et de la variation de 
phase entre une sphkre solide et le plasma est deduit. Le variation des prop&&s thermophysiques de 
particule solide et de plasma aver la temperature sons inclus. Un example des particules de Al,O, 
chau&s dans un jet de plasma d’argon- hydrogene est donne. La comparaison des resultats numeriques 
avec les r&hats expkrimentaux concernant la temperature de la surface, de la velocitS et du diamitre de 

particule est satisfaisant. 

SCHMELZEN VON PULVER-K~RNERN IN EINER PLASMA-FLAMME 

Z~mrnenf~~u~g-Zur Berechnung des W~rme~bergangs und des Phasenw~hselvorg~g~s eines 
kugelf~rmigen Teilchens in einer Strahlstrijmung wird eine numerische Berechnungsmethode aufgestellt. 
Dabei wird die Tem~raturabh~ngigkeit der thermophysikalischen Eigenschaften des Teifchens und des 
Plasmas in Betracht gezogen. Als Beispiel werden Aluminiumteifchen betrachtet, die in e&em 
Argon-Wasserstoff-Plasmastrahl aufgeheizt werden. Die numerischen Ergebnisse zeigen gute iiberein- 
stimmung mit experimentefl gemessenen Werten der Oberflachentemperaturen des Teilchendurchmessers 

und der Teilchengeschwindigkeit. 

WIABJlEHPiE 3EPEH I-IOPOUIKA B lVlA3MEHHOM @AKEJIE 

AUHOT~I,WBI - Paspa6oTaH qHcneaablii MeTon HccnenoBaHm npoueecoe Tennoo6Me~ H *axoBbIx 
H3MeHeHHii C@pIi%CKOii ‘(aCTHUbl B CTpytiHOM IIOTOKB. YrHTIGBaeTCa TeMliepaTYpflaSi 3aBHCHMOCTb 
Te~n~H3Hq~XHx XapaKTepHcTwK racrHufd si nna3Mbf. Pacchfoqefs npwep Harpeaa ~~M~Hea~x 
SacTmx a cTpye aproH~ao~o~nH0~ nna3Mbr. IIonpeeo xopomee woenmemie SHcnemr~x pe3ynb- 

TaTOB C IlaHHbIMH U3MBpBHHii TeMnepaTypbI nOBepXHOCTH, CXOpoCTH H J@iaMBTpa SaCTHQ. 


